
ICSSR Data Service
Indian Social Science Data Repository

http://www.icssrdataservice.in/

Indian Council of Social Science Research

“R”: User Guide

ICSSR Data Service
R 3.2.2: User Guide

Contents

1. Introduction 1

2. Installation 1

3. Assignment 2

4. Opening Dataset in R 2

5. Basic Commands 5

5.1 Str Command

5.2 Fix Command

5.3 Summary Command

5.4 Head Command

5.5 Is Command

5.6 Class Command

5.7 Levels Command

5.8 As.factor Command

5.9 Dim Command

5.10 Length Command

6. Opening txt. File in R 9

7. Contingency Tables 9

7.1 Calculating Three Way Table

8. Select Cases 11

9. Data Separation 12

10. Data Transformation 12

11. Sort Case 14

12. Calculation of Decile, Quartile and Percentile 15

13. Data Aggregation 17

14. Recoding 18

15. Merge Data 19

16. Graphs 19

R 3.2.2: User Guide

1

1. Introduction

R is a language, a system environment to run statistical analysis, and represent the graphics. It
was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John
Chambers and colleagues. R is a dialect of S language, as it falls under the categories of not only
software but also in language. But interestingly, R is an interpreted language which means the
users need not to build a programme like in other language (e.g. C). In R, the commands written
by user directly get executed. The commands should be always written in parentheses (e.g., str
()), then only the commands will be executed, otherwise R will display only the contents of
function. The interesting feature of R is that while using R, the uploaded data, variables and
functions are stored in the computer’s memory in the form of objects, which are not visible at
the front page of R.

2. Installation

Firstly, user should install the R language software which is available as free software. After the
installation, you can open it by clicking the R short-cut icon located on the desktop. The R
interface will appear on your system screen as shown in Fig. 1. Here, the window with the name
of R Console is shown, where the commands are to be written. In the R Console window, you
can see the symbol ">"which means R is asking to write the command of a function for its
execution.

Fig. 1: R Interface

R 3.2.2: User Guide

2

3. Assignment

Feeding the data in R is called assigning the data in R object. The process of assigning data in R
object is very simple as shown in Fig. 2. First, write down the name of variables for which you
need to assign values of the data. For example, to assign value to variable x; use less than (<)
and minus sign (–) i.e. "<-" . After using this, you need to write "c" and within brackets the
values. As such the following command is to be written:
x<-c (10, 12, 14, 16, 17, 18, 20)

This command implies that you have assigned values of 10, 12, 14,16,17,18 and 20 to the x
variable. Similarly, you may assign values to "y" variable. After assigning the values to x and y,
you can simply write "x" or "y" and the software will fetch and display these values as shown in
Fig. 2.

Fig. 2: Assigning Value to Variable

4. Opening Dataset in R

In this manual, the example of dataset for NSSO round “Schedule 25.2: Social Consumption:
Education, 71st Round" is used. This survey was conducted during 2014.

To open a dataset in R, firstly the file which is to be open, needs to be save as CSV (comma
separated values) file. After saving the file in CSV format, you may open the file by writing the
“read.csv” command in R Console. Fig. 3shows the command to open a "csv" file in R. Here
firstly, you need to assign the name to dataset. In this example, it is assigned as "Data". After
that use "<-", then write the "read.csv" and within bracket, type the location of the file which
need to be opened. Further, the term header=Tis to be used, if the first row in the "csv" file
contains the name of variables.

Fig. 3: Opening File in R by writing "read.csv" Command

R 3.2.2: User Guide

3

To check whether data is uploaded or not onto the R system, type the name of dataset, in this
case, write "Data" as shown in Fig. 4. This will produce the result as shown in Fig.5.

Fig. 4: Checking Status of Uploaded Data

Fig. 5: Display of Uploaded Data

Similarly, you may also open other types of files in R, such as: sav, dta, txt, etc. These files can
only be opened after uploading the concerned foreign software package, e.g. to open the sav
and dta file, foreign software package is required. In this manual, the process on how to open
sav file using foreign software package is described.

Before installing any new software into R, take the steps given below:

Set the CRAN Mirror from the Packages dropdown menu. As result, Fig. 6 will appear, where
you need to select the nearest location for faster downloading process, i.e. "India" in this case.
Please note that some of the foreign software package may not available in all CRAN mirror
sites.

R 3.2.2: User Guide

4

Fig. 6: Selection of CRAN Mirror to Download Foreign Software Package

Now, click on install packages from the dropdown menus, as a result, Fig. 7 will appear.

Fig. 7: Selecting Foreign Software Packages

R 3.2.2: User Guide

5

Select the “foreign” from the list of packages, as is shown in Fig. 7 After installing the foreign
software package, write down the following command: “require (foreign)“ which will load the
foreign package into R system. Then, use the "read.spss" command as given below to read the
"sav" file. For example, "read.spss" command is used here to read the "Nss71_25.2\\Block-1&2-
Level-01-Identification of sample household and particulars of field operations "file.

/Data<-read.spss("G:\\INFLIBNET \\Nss71_25.2\\Block-1&2- Level-01-Identification of sample
household and particulars of field operations.sav",use.value.labels=TRUE, to.data.frame=TRUE).

5. Basic Commands

5.1 Str Comand

In many datasets, one of the basic things users want to check is about the structure of data. In
R, "Str command" is used to check the structure of data. The command to be written as: Str(file
name).

In this example, it has been written "str(HH)". As a result, Fig. 8 will appear, showing the
numbers of observations, numbers of variables, characters of variables etc.

Fig. 8: Display of Data Structure

R 3.2.2: User Guide

6

5.2 Fix Command

Fix command is used when data is to be edited. To edit data in a specific file, you need to write:
"Fix(file name)". For example taken by us, it is written as "fix(HH)" which has produced Table 1
as a result. Here, the users may edit the data just by typing in the cells.

Table 1: Use of "fix command" to Edit Data

5.3 Summary Command

The "summary" command provides basic statistics of various variables, like minimum value, 1st
quartile, median, mean, 3rd quartile and maximum value. To perform the above basic statistics
with data, the following command to be used: summary and within brackets the name of
dataset. In this case it is HH, so the command is written as "summary (HH)"which is shown
below in Table 2.

Table 2: Use of "summary command"

R 3.2.2: User Guide

7

5.4 Head Command

Head command provides the first few entries of each variable. It is shown below in Table3,
where the first 6 entries of variables are shown. The command should be "head" and "name of
dataset within bracket", for e.g. head (HH). If, you are interested to view more than 6 entries,
specifying the numbers of entries. For example, if you are interested to view the first 10 entries
of variable, use the following command:
head (HH, n=10)

The result will be same as shown in Table 4, where the first 10 entries of variables are shown.
Likewise, you may also see the last few entries of the variables by using tail command, i.e.
tail(HH, n=10).

Table 3: Use of "head command"

Table 4: Use of "head command"

5.5 Is command

"ls" command provides name of variables in the dataset. Write "Is" and "name of dataset" as
shown below:
Is (HH)

R 3.2.2: User Guide

8

Resultant Table 5 is reproduced below.

Table 5: Use of "ls command"

5.6 Class Command

"class" command is used to know the type of variables. Use of this command is as follows:
class (name of variable).

It will show the type of variable, i.e. numeric, factor, etc.

5.7 Levels command

The "levels" command is used only in factor type of variables. For example, sector contains
rural and urban categories, similarly other variables may have more than two categories. As
such, to find out those categories, use the command given below:
levels (variable name)

5.8 As.factor command

The "as.factor" command helps in changing one type of variable to other types of variable, such
as factor or categorical variable. For example, here sector is categorical variable, but in "R" it
will be considered as numeric variable because the values are assigned to different categories.
As such, to change its type, the numeric variable needs to be converted into factor variable. Use
the following command for this purpose:
sector<-as.factor(sector)

This command will convert the numeric variable to factor.

5.9 Dim Command

The "dim" command reveals number of rows and columns in a data sets. The command is used
as follows:
dim(Dataset name), for e.g "dim(HH)"

This command will produce the numbers of rows and columns respectively.

R 3.2.2: User Guide

9

5.10 Length Command

The "length" command is used to find out numbers of variables in the dataset. The command is
to be written as follows:
length (dataset name)

6. Opening txt file in R

To open a fixed delimited file in R, "read.fwf" command is used. Most of the datasets are
provided in text fixed delimited form which need to be broken according to the width provided
along with the dataset. The command to be used for opening txt file is R is as follows:
read.fwf (file, widths, header =TRUE, sep = "\t", skip = 0, n = -1, buffersize = 2000)

In this command, "file" implies the name of file in the local computer hard disc, "header" is
whether the data has variable names, if yes, write "TRUE". "Sep" means the character or the
separator used internally, "skip" means how many initial lines user wishes to skip, and
"buffersize" means maximum number of lines to be read from the data file.

Above-mentioned command will lead to uploading of data file into R. Further, the user are
required to check carefully whether the data uploaded into R is correctly uploaded or not.

7. Contingency Table or Cross Tabulation

Cross tabulation is required to find out the relationship between two categorical variables. In
order to do the cross tabulation in R, “table” command is used. For example, to see the relation
between the sector and education, use the following command:
table name <- table (file name $variable name, file name $variable name)

In the example taken here, it is: HH.tab<-table(HH $sector, HH $education). Then, type the
name of table i.e. HH.tab, to produce the result.

This command will produce the result as shown in Table 6, where rural and urban as well as
type of education is given in codes.

Table 6: Calculation of Cross Tabulation- 1

R 3.2.2: User Guide

10

Similarly, you may also calculate the row percentage and column percentage using prop.table
command. For the example used here, the command to be used for calculating the row
percentage is as follows:
round(prop.table (HH.tab,1), 2)

This command will produce the result as shown in Table 7. Here, "HH.tab" is the table name,
assigned to earlier Table 6.

Table 7: Calculation of Cross Tabulation- 2

To calculate column percentage, use the command:
round (prop.table (HH.tab,2),2)

This command will produce the result as shown in Table 8.

Table 8: Calculation of Cross Tabulation- 3

You may also calculate the "chi square" statistics for the two variables by using
"chisq.test(HH.tab)"command. Resultant output produced is given in Fig. 9.

Fig. 9: Calculation of Chi Square

R 3.2.2: User Guide

11

7.1 Calculating Three Way Table

Similar to two way tables, you may also calculate three way tables, using "table" command. For
example, to prepare the table for level of education, marital status and sex, use the following
command:
table<-table(HHgen_edu, HHmarital_status, HH$sex)

Resultant output is given in Table 9, where rows represent the level of education and columns
represent the marital status. Level of education and marital status are shown separately for
male in column1 and female in column 2. Similarly, you may also prepare four way, five way
and so on tables.

Table 9: Calculation of Three way Table

8. Select Cases

In R, you may perform calculation for selected cases of a variable. For example, in order to
calculate mean age of males from a dataset, use the following command:
mean(HH $age[HH $sex==1])

Here "HH" is the name of dataset and "Sex==1" implies male only. Result of the output is shown
in Fig. 10. Likewise, you may also calculate it for females.

Fig. 10: Calculation of Selected Cases of a Variable

R 3.2.2: User Guide

12

9. Data Separation

The "data separation" function in R, is used for separating the dataset for specific values. For
example, to separate a given dataset into different age group, i.e. people above 50 years of age
and people below 50 years, the following command is to be written:
HH$agecat <- ifelse(HH$age > 50,c("older"), c("younger"))

The above mentioned command will separate the age into older and younger people as shown
in Table 10.

Table 10: Use of Data Separation Function

10. Data Transformation

Data transformation command changes the values of variables or observations through
mathematical calculations, such as: subtraction, addition, multiplication and so on. For
calculating the square root of a variable (e.g. age), use the following command:
HH$transformed_age <- sqrt(HH$age).

R 3.2.2: User Guide

13

Here, "HH" is the name of dataset and "sqrt" is the function to be used for square root. This will
produce a new variable with the name of "transformed_age" as shown in Table 11.

Table 11: Changing of Value with Use of Data Transformation Command

Likewise, you may also calculate the log of a variable by using the following command:
HH$log_age <- log(HH$age).

As a result, a new variable with the name of "log_age" will be created as shown in Table 12.

Table 12: Calculation of Log of a Variable

Transformation function in R also provides the mathematical computation between two
variables. For example, to multiply the age values with the values assign in sex category, use the
following command:
HH$S_age <- (HH$age*HH$sex)

R 3.2.2: User Guide

14

As a result, a new variable with the name "S_age" will be created as shown in Table 13.

Table 13: Computation between Two Variables with the Use of Data Transformation

Likewise, the values of above two variables may also be divided, using the following command:
HH$SS_age <- (HH$age/HH$sex).

As a result, new variable with the name of "SS_age" will be created as shown in Table 14.

Table 14: Division of Values of Two Variables Using Data Transformation Command

11. Sort Case

The "sort case" function in R sort the data in ascending or descending order. For example, to
arrange the data in ascending order, use the following command:
newdata <- HH[order(age),]

R 3.2.2: User Guide

15

The above mentioned command will create a new dataset with the name "newdata" where the
data is arranged in ascending order of age as shown in Table 15.

Table 15: Use of "sort case" for Ascending Order of Data- 1

In order to sort the data in ascending order of age and descending order of sex, use the
following command:
newdata1<- HH[order(age, -sex),]

As a result, the new dataset will be created with the name of "newdata1" as shown in Table 16.

Table 16: Use of "sort case" for Ascending Order of Data- 2

12. Calculation of Decile, Quartile and Percentile

In NSS published reports, many results are shown in decile form. R provides the command to
calculate the decile of a particular variable. To calculate the decile of a given variable, first the
software package of "dplyr" is to be uploaded in the R. After uploading it, use the following
command:
library (dplyr).

The above mentioned command will install the software package in R. After that, use the
following command:
HHH<-HH %>% mutate(decile = ntile(age, 10)).

R 3.2.2: User Guide

16

As a result, a new dataset with the name of "HHH" will be created, containing decile class of age
with the name of decile as shown in Table 17.

Table 17: Calculation of Decile

Similarly, by using Q_HH<-HH %>% mutate(quartile = ntile(age, 4))command, you can change a
variable into four equal parts as shown in Table 18.

Table 18: Calculation of Quartile

Likewise, to calculate percentile, use the following command:
P_HH<-HH %>% mutate(percentile = ntile(age, 100))

R 3.2.2: User Guide

17

This will create the new dataset with "P_HH" name, based on percentile of age as shown in
Table 19.

Table 19: Calculation of Percentile

13. Data Aggregation

Data aggregation function in R deals with gathering the data for numerical variable based on
some categorical variables. For example, to calculate the total expenditure of people belonging
to different age and different sector, use the following command:
aggregatdata <-aggregate(Data$tot_exp, by=list(sector, age), FUN=sum, na.rm=TRUE)

In this example, total expenditure is being aggregated (summed-up) based on sector and age.
As a result, new dataset named "aggregatedata" will be created as shown in Table 20.

In Table 20, Group.1 shows the sector (rural and urban), Group. 2 represent age of individual,
and "x" represent the total expenditure of individuals.

Table 20: Data Aggregation of Variable

Similarly, data can also be aggregated by calculating the mean of total expenditure of
individuals using the following command:
aggregatedata <-aggregate(Data$tot_exp, by=list(sector, age), FUN=mean,na.rm=TRUE)

R 3.2.2: User Guide

18

As a result, a new dataset will be created named "aggregatedata" as shown in Table 21 wherein
Group1 and Group2 represent the sector and age of individual respectively and "x" represents
the mean expenditure of individuals.

Table 21: Data Aggregation of Variable

14. Recoding

The recoding of data command is used when the two or more cases of a variable are to be
combined. In order to recode variable, you need to install “car” software package, using
install(car) command and library(car) command. After uploading the car package use the
following command:
Data$age.rec <- recode(Data$age,"18:19='18to19';20:29='20to29';30:39='30to39'; else=1").

In the above command, age variable for 18:19 as 18to19, 20:29 as 20 to 29 and so on is being
recoding. As result, a new variable with the name of "age.rec" will be created in the last column
as shown in Table 22.

Table 22: Recoding Variables

R 3.2.2: User Guide

19

15. Merge Data

“Merge" command is used to merge two variables from two different files. In other words,
merge command is used to add a variable in the dataset. In this example, variables from two
different datasets named "Data" and "Data2" are being merged using the command given
below:
merged_data <- merge(Data,Data2,by="HH_ID")

Using above mentioned command, two datasets are merged using a common ID i.e. "HH_ID" as
shown in Table 23. Similarly, to add rows of the two datasets, i.e. "Data" and "Data2", use the
following command:
merged_data <- rbind(Data,Data2).

Then, the function "rbind" is to be used to merge the two datasets.

Table 23: Merging Data from Two Variables

16. Graphs

In R, you may draw a wide ranges of graph, e.g. histogram, bar, line, area, scatter, plot, etc.
Histograms are shown in Graph 1, 2, 3, and 4. Graph1 is obtained through hist(age)command
and Graph2 is obtained using hist(age,breaks="FD") command, where FD is used to
automatically adjust the width of graph.

R 3.2.2: User Guide

20

Graph 1: Drawing of Histogram

Graph 2: Drawing of Histogram

Histogram of age

age

Fr
eq

ue
nc

y

5 10 15 20 25

0
20

00
40

00
60

00

Histogram of age

age

Fr
eq

ue
nc

y

5 10 15 20 25

0
10

00
30

00
50

00
70

00

R 3.2.2: User Guide

21

Graph 3 is drawn only for "urban" sector using hist(age[sector=="2"],breaks="FD",
main="Urban",xlab="age") command, and Graph 4 is drawn using
hist(age[sector],breaks="FD",xlab="age") command to show the frequency of both urban and
rural sectors.

Graph 3: Drawing of Histogram

Graph 4: Drawing of Histogram

Urban

age

Fr
eq

ue
nc

y

5 10 15 20 25

0
10

00
25

00

Rural Urban

Title

0
10

00
0

30
00

0
50

00
0

R 3.2.2: User Guide

22

Similarly, you may also prepare the pie chart in R to exhibit the percentage of variables. In this
example,pie chart for sector (rural and urban) is calculated using the command given below:

 table(sector)
 count<-table(sector)
 pie(count)
 box()

With the use of "table" command, first table of sector is prepared followed by "count"
command to assign name to that table, i.e. count. "pie(count)" command is used to actually
draw the Pie chart as shown in Fig. 11. Here, in the pie chart, code 1 represents rural sector and
code 2 represents urban sector. Finally, the command box(), is used to put the pie chart in a
box.

Pie chart 1: Showing the Percentage of Variables

1

2

Dr. Upendra Choudhury

Member-Secretary

Indian Council of Social Science Research

Aruna Asaf Ali Marg

New Delhi - 110067

E-mail: ms@icssr.org

Dr. Jagdish Arora

Director

Information and Library Network Centre

An IUC of UGC

Infocity, Gandhinagar -382007, Gujarat

E-mail: director@inflibnet.ac.in

For more information : http://www.icssrdataservice.in/.

Indian Council of Social Science Research
 JNU Institutional Area, Aruna Asaf Ali Marg

New Delhi - 110067 (INDIA)

For further information please contact

	Page 1
	Page 2

